
Backpropagation in Neural Network

Victor BUSA victor.busa@gmail.com

April 12, 2017

Well, again, when I started to follow the Stanford class as a self-taught person. One thing really
bother me about the computation of the gradient during backpropagation. It is actually the most
important part in the �rst 5 lessons and yet all the examples from Stanford class are on 1-D functions.
You can see those examples via this link: http://cs231n.github.io/optimization-2/ Well the
advice that they give is that on higher dimension it "works quite the same". It is actually not false
but I think we style need to do the math to see it. So, in this paper I will compute the gradient on
higher dimension of theReLu, the bias and theweight matrix in a fully connected network.

Forward pass Before dealing with the backward pass and the computation of the gradient in
higher dimension, let's compute the forward pass �rst, and then we will backpropagate the gradient.
Using the notation of the assignment, we have:

y1 = XW1 + b1

h1 = max(0, y1)

y2 = h1W2 + b2

Li =

 ey2yi∑
j

ey2j


L =

∑
samples

Li

N
where N=number of training sample

In python code we can compute the forward pass using the following code:

1

http://cs231n.github.io/optimization-2/

y1 = X. dot (W1) + b1 #(N,H) + (H)
h1 = np .maximum(0 , y1)
y2 = h1 . dot (W2) + b2
s c o r e s = y2

correspond to e^y2 in maths
exp_scores = np . exp (s c o r e s)

correspond to e^y2/sum(e^(y2) [j]) in maths
probs = exp_scores / np .sum(exp_scores , ax i s =1, keepdims=True)

correspond to − l o g [(e^y2/sum(e^(y2) [j])) [y i]] = Li in maths
cor rec t_logprobs = −np . l og (probs [range (N) , y])

correspond to L
l o s s = np .sum(cor rec t_logprobs) / N

And using the notation of the assignment, we have:

• X ∈ RN×D, W1 ∈ RD×H , b1 ∈ RH

• h1 ∈ RN×H , W2 ∈ RH×C

• y2 ∈ RN×C , b2 ∈ RC

Backpropagation pass

gradient of the Softmax We already saw (previous paper) that the gradient of the softmax is
given by:

∂Li

∂fk
= (pk − 1(k = yi))

where:

pyi
=

efyi∑
j

efj

So actually the gradient of the loss with respect to y2 is just the matrix probs (see python code of the
forward pass) in which we substract 1 only in the ythi column. And we need to do this for each row
of the matrix probs (because each row correspond to a sample). So in python we can write:

dy2 = probs
dy2 [range (N) , y] −= 1
dy2 /= N

Note : We divide by N because the total loss is averaged over the N samples (see forward pass
code).

2

Gradient of the fully connected network (weight matrix) Then now we want to compute
dL
dW2

. To do so, we will use the chain rule. Note that to avoid complex notation, I rewrite W2 as
being W and wij being the coe�cient of W (b2 is replace by b, y2 by y and h1 by h). As L is a
scalar we can compute ∂L

∂wij
directly. To do so, we will use the chain rule in higher dimension. Let's

recall �rst that with our simpli�ed notation, we have:

y = hW + b

where:

• h is a (N , H) matrix, W is a (H, C) matrix

• b is a (C, 1) column vector

dL

dwij
=
∑
p,q

dL

dypq

dypq
dwij

(1)

We already know all the dL
dypq

(this is the term of the ∂L
∂y2

we computed in the previous paragraph).

So we only need to focus on computing
dypq

dwij
:

dypq
dwij

=
d

dwij

(
H∑

u=1

hpuwuq + bq

)
= 1{q = j}hpi

(2)

So �nally replacing (2) in (1) we have:

dL

dwij
=
∑
p,q

dL

dypq
1{q = j}hpi =

∑
p

dL

dypj
hpi =

∑
p

hp,i
dL

dypj
=
∑
p

hᵀ
i,p

(
dL

dy

)
p,j

(3)

We used the fact the hpi and
dL
dypj

are scalars and × is a commutative operation for scalars. Finally

we see that: (
∂L

∂W

)
i,j

=
∑
p

hᵀ
i,p

(
∂L

∂y

)
p,j

So we recognize the product of two matrix: hᵀ and ∂L
∂y Using the assignment notations we have:

∂L

∂W2
= hᵀ

1

∂L

∂y2

In python we denote dx as being ∂L
∂x , so we can write:

dW2 = h1 .T. dot (dy2)

3

Gradient of the fully connected network (bias) Let's de�ne Y = Wx + b with x being a
column vector. With the notation of the assignment we have:

w11 w12 . . . w1C

w21 w22 . . . w2C

...
. . .

. . .
...

wH1 wH2 . . . wHC





x1

x2

...

xC


+



b1

b2

...

bH


=



y1

y2

...

yH


(4)

We already computed ∂L
∂y2

(gradient of the softmax), so according to the chain rule we want to
compute:

∂L

∂b
=

∂L

∂y2

∂y2
∂b

Note that here y2 = y to simplify the notations.

also according to (4), we saw that ∀i 6= j:

dyi
dbj

=
d

dbj

(
C∑

k=1

wikxk + bi

)
= 0

also if i = j:

dyi
dbi

=
d

dbi

(
C∑

k=1

wikxk + bi

)
= 1

hence we have that ∂y2

∂b is the identity matrix (1 on the diagonal and 0 elsewhere). Noting this
matrix IHC , we have:

∂L

∂b
=

∂L

∂y2
IHC =

∂L

∂y2

Now, if we are dealing with X as being a matrix we can simply noticed that the gradient is the sum
of all local gradient in yi (see Figure 1). So we have:

∂L

∂b
=

n∑
i=1

∂L

∂yi

∂yi
∂b

=

n∑
i=1

∂L

∂yi

In python, we can achieve the gradient with the following code:

db2 = np .sum(dy2 , ax i s=0)

Gradient of ReLu I won't enter into to much details as we understand how it works now. We
use the chain rule and the local gradient. Here again I will focus on computing the gradient of x, x
being a vector. In reality X is actually a matrix as we use mini-batch and vectorized implementation
to speed up the computation. For the local gradient we have:

4

Figure 1: Gradient of the bias. We see that b receives n incoming gradients. So we have to add all
those incoming gradients to get the gradient w.r.t the bias

∂

∂x
(ReLu(x)) =

∂

∂x
max(0, x) =



∂
∂x1

max(0, x1)
∂

∂x2
max(0, x1) . . . ∂

∂xH
max(0, x1)

∂
∂x1

max(0, x2)
∂

∂x2
max(0, x2) . . . ∂

∂xH
max(0, x2)

...
. . .

. . .
...

∂
∂x1

max(0, xH) ∂
∂x2

max(0, xH) . . . ∂
∂xH

max(0, xH)



=



1(x1 > 0) 0 . . . 0

0 1(x2 > 0) . . . 0

...
. . .

. . .
...

0 0 . . . 1(xH > 0)


and then using chain rule we have what we want:

5

∂L

∂x
=

∂L

∂y

∂y

∂x
=

∂L

∂y

∂

∂x
(ReLu(x)) =

∂L

∂y



1(x1 > 0) 0 . . . 0

0 1(x2 > 0) . . . 0

...
. . .

. . .
...

0 0 . . . 1(xH > 0)


In python (dy1 being ∂L

∂x and dh1 being ∂L
∂y), we can write:

dy1 = dh1 ∗ (y1 >= 0)

Note : I let the reader compute the gradient of the Relu if x is a matrix. It isn't di�cult. We just
need to use the chain rule in higher dimension (like I did for the computation of the Gradient w.r.t
the weight matrix). I preferred to use x as a vector to be able to visualize the Jacobian of the Relu.

Conclusion In this paper we tried to understand quite precisely how to compute the gradient in
higher dimension. We hence gain a better understanding of what's happening behind the python
code and are ready to compute the gradient of other activations functions or other kind of layers
(not necessarily fully connected for example).

6

