
Chapter 15

Probabilistic Reasoning over

Time

15.1 Show that any second-order Markov process can be rewritten as a �rst-
order Markov process with an augmented set of state variables. Can this al-
ways be done parsimoniously, i.e., without increasing the number of parameters
needed to specify the transition model?

Answer let Xt be a variable that can take the state x1, x2, ..., xk. The �rst-
order Markov Chain property states that :

P (Wt = w|Wt−1,Wt−2,Wt−3...) = P (Wt = w|Wt−1)

while the second-order Markov Chain property is de�ned by :

P (Wt = w|Wt−1,Wt−2,Wt−3...) = P (Wt = w|Wt−1,Wt−2)

We can transform the second-order Markov Chain into the �rst-order Markov
Chain by rede�ning the state spaces as follow :
Let Zt−1,t be a variable that takes 2 consecutive states of the Xt variable, that
is to say : If Xt can take x1, x2, x3 as value then we de�ne Zt−1,t such that
Zt−1,t can take either x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3.
In this new state-space we have :

P (Zt−1,t = zt−1,t|Zt−1,t−1, Zt−2,t−1, Zt−3,t−2...) = P (Zt−1,t = zt−1,t|Zt−1,t−1)
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15.2 In this exercise, we examine what happens to the probabilities in the
umbrella world in the limit of long time sequences.

a. Suppose we observe an unending sequence of days on which the umbrella
appears. Show that, as the days go by, the probability of rain on the current
day increases monotonically toward a �xed point. Calculate this �xed point.

b. Now consider forecasting further and further into the future, given just
the �rst two umbrella observations. First, compute the probability P (r2+k|u1, u2)
for k = 1, ..., 20 and plot the results. You should see that the probability con-
verges towards a �xed point.

Answer

a. We want to retrieve the probability that the current day is a rainy day,
that is to say Rt, knowing that we saw u1:t. To compute this probability we can
use the �ltering Formula (15.5) :

P (Rt|u1:t) = αP (ut+1|Rt+1)
∑
Rt−1

P (Rt|Rt−1)P (Rt−1|u1:t−1)

Furthermore we want to compute the �xed point. This condition gives us the
relation :

P (Rt|u1:t) = P (Rt−1|u1:t−1)

Replacing in the previous equation we get the relation :

P (Rt|u1:t) = αP (ut+1|Rt+1)
∑
Rt−1

P (Rt|Rt−1)P (Rt|u1:t)

As there is only 2 states for the weather : there is rain or there is not... We can
replace P (Rt−1|u1:t−1) by p when there is rain and by 1 − p when there is no
rain. That leads us to a system of 2 equations :

p = α0.9 ∗ 0.7p+ 0.3 ∗ (1− p)

1− p = α0.2 ∗ 0.3p+ 0.7 ∗ (1− p)

Solvingthissystem,wefindthatp ≈ 0.8933

b. To compute all those probabilities, the easier is to �nd a recursive rela-
tionship between P (R2+k|U1, U2) and P (R2+k−1|U1, U2) Using Bayes rules we
know that :

P (R2+k|U1, U2) =
∑

R2+k−1

P (R2+k|R2+k−1)P (R2+k−1|U1, U2)
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Hence we have :

P (R2+k|U1, U2) = 0.7P (r2+k−1|U1, U2) + 0.3(1− P (r2+k−1|U1, U2))

P (R2+k|U1, U2) = 0.4P (R2+k−1|U1, U2) + 0.3

When this relation converges we have : P (R2+k|U1, U2) = P (R2+k−1|U1, U2),
hence we have to solve :

P (R2+k|U1, U2) = 0.4P (R2+k|U1, U2) + 0.3

The solution is trivial : lim
k→+∞

P (R2+k|U1, U2) = 0.5 Also, knowing the conver-

gence point we can now subtract it to each terms and we get :

P (R2+k|U1, U2)−0.5 = 0.4P (R2+k−1|U1, U2)−0.2 = 2/5[P (R2+k−1|U1, U2)−0.5]

Rewriting W (R2+k|U1, U2) = P (R2+k|U1, U2)− 0.5 we have :

W (R2+k|U1, U2) = 2/5W (R2+k−1|U1, U2)

This is a geometric serie so :

W (R2+k|U1, U2) = (2/5)kW (R2|U1, U2)

Replacing W by P we �nally get :

P (R2+k|U1, U2) = (2/5)k(P (R2+k−1|U1, U2)− 0.5) + 0.5
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15.3 This exercice develops a space-e�cient variant of the forward-backward
algorithm described in Figure 15.4 (page 576). We wish to compute P (Xk|e1:t)
pour k = 1, ..., h. This will be done with a divide-and-conquer approach.

a. Suppose, for simplicity, that t is odd, and let the halfway point be
h = (t + 1)/2. Show that P (Xk|e1:t) can be computed for k = 1, ..., h given
just the initial forward message f1:0, and the backward message bh+1:t, and the
evidence e1:h.

b. Show a similar result for the second half of the sequence

c. Given the results of (a) and (b), a recursive divide-and-conquer algo-
rithm can be constructed by �rst running forward along the sequence and then
backward from the end, storing just the required messages at the middle and
the ends. Then the algorithm is called on each half. Write out the algorithm in
detail.

d. Compute the time and space complexity of the algorithm as a function
of t, the length of the sequence. How does this change if we divide the input
into more than two pieces?

Answer

a. As we want to develop a variant of the forward-backward algorithm, we
already now that we can compute P (Xk|e1:t) as [15.8] :

P (Xk|e1:t) = αf1:kbk+1:t

Also we know that [15.5] :

f1:k = αFORWARD(f1:k−1, ek)

Using this relation recursively, we can compute f1:k knowing only f1:0 and e1:k,
Indeed : f1:1 = αFORWARD(f1:0, e1), so we can compute f1:1 from f1:0 and
e1:1 and then, as with now know f1:1, we can compute f1:2 if we know e1:2.
Hence we can compute f1:k knowing only f1:0 and e1:k The same argument
can be applied to the backward pass and we can deduce that : bk+1:t can be
computed knowing bh+1:t and ek+1:h

Hence P (Xk|e1:t) can be computed from bh+1:t, e1:h and f1:0

b. We can apply the same reasoning on the upper half. The result is the
same replacing lower bound 0 by h and upper bound h by t, so : P (Xk|e1:t) can
be computed from bt+1:t, eh+1:t and f1:h
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c. We can implement it using the merge sort algorithm and replacing the
function call with our function. The base case is the same : a sequence of length
1 or 2.

d. At each recursion, the algorithm do Θ(t) operations (for example for
the �rst level of recursion, Θ(h) operations for the �rst half and Θ(h) for the
second half). Furthermore, there are Θ(log2t) so the algorithm takes Θ(tlog2t).
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15.5 Equation (15.12) describes the �ltering process for the matrix formula-
tion of HMMs. Give a similar equation for the calculation of likelihoods, which
was described generically in Equation (15.7).

Answer Equation 15.12 also work for l message. In the book, we can
see that the message calculation is identical to that for �ltering: l1:t+1 =
FORWARD(l1, et+1). Hence for the message calculation we also have :
l1:t+1 = αOt+1T

T l1:t and using [15.7] we have L1:t = P (e1:t) =
∑
i

li
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15.6 Consider the vacuum worlds of Figure 4.18 (perfect sensing) and Figure
15.7 (noisy sensing). Suppose that the robot receives an observation sequence
such that, with perfect sensing, there is exactly one possible location it could he
in. Is this location necessarily the most probable location under noisy sensing for
su�ciently small noise probability ε? Prove your claim or �nd a counterexample.

Answer We can suppose that, under deterministic sensing we reach a
unique possible location l. Hence, under deterministic sensing we have
P (Xt = l|e1:t) = 1 (the position l at step t is the only position possible after
each observation we made at each time step t).

Is this location the most likely location under noisy sensing ?

To answer this question let d be the outdegree of the neighborhood graph (that
is to say : the number of other possible states we can reach from the current
state). Hence their is a maximum of dt di�erent states in which we can end
up after t steps. Fixing ε smaller than 1/dt allow this location to be the same
under noise. However, ε depends on the length of the path t, that is to say
if we �xed ε we could always �nd a path (as far as we can go) that is the
only possible location under deterministic sensing but which is not under noisy
sensing.

7



15.8 Consider a version of the vacuum robot (page 582) that has the policy of
going straight for as long as it can; only when it encounters an obstacle does it
change to a new (randomly selected) heading. To model this robot, each state in
the model consists of a (location, heading) pair. Implement this model and see
how well the Viterbi algorithm can track a robot with this model. The robot's
policy is more constrained than the random-walk robot; does that mean that
predictions of the most likely path are more accurate?

Answer I didn't implement it. Yet, it seems natural to think that the pre-
dictions of the most likely path is more accurate, because, instead of having at
max dt possible paths with t being the number of time step and d being the
outdegree of the neighborhood graph, we only have to deal with a small num-
ber of possible headings now. Furthermore, the exact time at which the agent
detects a collision with a wall helps to eliminate many states.
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15.10 Consider a version of the vacuum robot (page 582) that has the policy
of going straight for as long as it can; only when it encounters an obstacle does
it change to a new (randomly selected) heading. To model this robot, each
state in the model consists of a (location, heading) pair. Implement this model
and see how well the Viterbi algorithm can track a robot with this model. The
robot's policy is more constrained than the random-walk robot; does that mean
that predictions of the most likely path are more accurate?

Answer I didn't implement it. Yet, it seems natural to think that the pre-
dictions of the most likely path is more accurate, because, instead of having at
max dt possible paths with t being the number of time step and d being the
outdegree of the neighborhood graph, we only have to deal with a small num-
ber of possible headings now. Furthermore, the exact time at which the agent
detects a collision with a wall helps to eliminate many states.
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15.11 Often, we wish to monitor a continuous-state system whose behavior
switches unpredictably among a set of k distinct "modes." For example, an
aircraft trying to evade a missile can execute a series of distinct maneuvers that
the missile may attempt to track.A Bayesian network representation of such a
switching Kalman �lter model is shown in Figure 15.21.

a. Suppose that the discrete state Si has k possible values and that the
prior continuous state estimate P (X0) is a multivariate Gaussian distribution.
Show that the prediction P (X1) is a mixture of Gaussians � that is, a
weighted sum of Gaussians such that the weights sum to 1.

b. Show that if the current continuous state estimate P (Xt|e1:t) is a mix-
ture of m Gaussians, then in the general case the updated state estimate P (Xt+1|e1:t+1)
will be a mixture of km Gaussians.

c. What aspect of the temporal process do the weights in the Gaussian
mixture represent?

Answer

a. Using Bayes rule we can commute :

P (X1) =

k∑
i=1

P (S0 = i)

∫
X0

P (X0)P (X1|X0, S0 = i)dX0

Also, according to the properties of the Kalman �lter [15.4.1], we know that
the integral is a Gaussian. Hence the prediction distribution is a sum of k
Gaussians weighted by P (S0) (As P (S0) is a probability, that ensures that
k∑

i=1

P (S0 = i) = 1)

b. Applying the equation [15.18] we get :

P (Xt+1, St+1|e1:t+1)

= αP (et+1|Xt+1, St+1)P (Xt+1, St+1|e1:t)

or we know [15.17] :

P (Xt+1, St+1|e1:t) =

∫
xt

P (Xt+1, St+1|xt, st)P (xt, st|e1:t)dxt
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And so :
P (Xt+1, St+1|e1:t+1)

= αP (et+1|Xt+1, St+1)

k∑
st=1

∫
xt

P (Xt+1, St+1|xt, st)P (xt, st|e1:t)dxt

As Xt+1 and St+1 are independents given Xt and St we can rewrite it :

P (Xt+1, St+1|e1:t+1)

= αP (et+1|Xt+1, St+1)

k∑
st=1

P (St+1|st)P (st|e1:t)
∫
xt

P (Xt+1|xt, st)P (xt|e1:t)dxt

Using the hypotheses of the question and the properties of integral and sum of
Gaussians, we can conclude that we have km Gaussians.
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