
Gradient of the SVM Hinge loss

Victor BUSA victor.busa@gmail.com

April 9, 2017

When I started to follow CS231n course from Stanford as a self-taught person, I was a bit irritated
that they weren't more explanations about how we are supposed to compute the gradient of the
hinge loss. Actually, in the lecture course (http://cs231n.github.io/optimization-1/) we can
see a formula for the gradient of the SVM loss. Although the formula seems understandable, I still
thinks we might need to get our hands dirty by doing the math. Indeed, what does ∇wyi

Li means
? Let's dive into how we can compute the gradient of the SVM loss function

Loss Function In this part, I will quickly de�ne the problem according to the data found in
assignment1 of CS231n. Let's de�ne our Loss function by:

Li =
∑
j 6=yi

[max(0, xiwj − xiwyi
+ ∆)]

Where:

• wj are the column vectors. So for example wᵀ
j = [wj1, wj2, . . . , wjD]

• X ∈ RN×D where each xi are a single example we want to classify. xi = [xi1, xi2, . . . , xiD]

• hence i iterates over all N examples

• j iterates over all C classes.

• yi is the index of the correct class of xi

• ∆ is the margin parameter. In the assignment ∆ = 1

• also, notice that xiwj is a scalar

Analytic gradient We want to compute ∀i, j ∈ [1, N] × [1, C] ∇wj
Li. As we know wj ∈ RD×1,

so we can write:

∇wj
Li =



dLi
dwj1

dLi
dwj2

...
dLi
dwjD



1

http://cs231n.github.io/optimization-1/

Hence, let's �nd the derivative of dLi
dwkj

with k ∈ [1, C]. To compute this derivative I will write Li

without
∑

so it will be easier to visualize:

Li = max(0, xi1w11 + xi2w12 + . . . + xijw1j + . . . + xiDw1D − xi1wyi1 − xi2wyi2 + . . . − xyiDw1D)+

max(0, xi1w21 + xi2w22 + . . . + xijw2j + . . . + xiDw2D − xi1wyi1 − xi2wyi2 + . . . − xyiDw1D)+

...

max(0, xi1wk1 + xi2wk2 + . . . + xijwkj + . . . + xiDwCD − xi1wyi1 − xi2wyi2 + . . . − xyiDw1D)+

...

max(0, xi1wC1 + xi2wC2 + . . . + xijwCj + . . . + xiDwCD − xi1wyi1 − xi2wyi2 + . . . − xyiDw1D)+

So, now that we can see things quite easily, we see that:

∀k ∈ [1, C]\{yi}, ∀j ∈ [1, D]
dLi

dwkj
= 1(xiwk − xiwyi

+ ∆ > 0)xij

Using the de�nition of ∇wj
Li, we now have:

∇wjLi =



dLi
dwj1

dLi
dwj2

...
dLi
dwjD


=



1(xiwj − xiwyi
+ ∆ > 0)xi1

1(xiwj − xiwyi
+ ∆ > 0)xi2

...
1(xiwj − xiwyi + ∆ > 0)xiD

 = 1(xiwj − xiwyi + ∆ > 0)



xi1

xi2

...
xiD


Now, what happen when yi = k ? Using the form of Li in the box, we see that wyij intervenes in
all lines. Hence we have that:

yi = k, ∀j ∈ [1, D]
dLi

dwyij
= −

∑
k 6=yi

1(xiwk − xiwyi
+ ∆ > 0)xij

leading to:

∇wyi
Li =



dLi
dwyi1

dLi
dwyi2

...
dLi

dwyiD


=



−
∑

k 6=yi

1(xiwk − xiwyi
+ ∆ > 0)xi1

−
∑

k 6=yi

1(xiwk − xiwyi
+ ∆ > 0)xi2

...
−

∑
k 6=yi

1(xiwk − xiwyi
+ ∆ > 0)xiD


= −

∑
k 6=yi

1(xiwk−xiwyi
+∆ > 0)



xi1

xi2

...
xiD



Vectorized implementation Now that we understand how we got the gradient of the hinge
loss function. We will compute the gradient using Numpy and a vectorized implementation (the
unvectorized implementation is quite straightforward). I won't put the Python code here, I will just
use image and pseudo code to present the result. The Python implementation can be found in the
linear_svm.py �le.

Forward pass Firstly we will focus on the implementation of the forward pass. In other words,
we will derive a formula to compute the loss with a vectorized implementation. For a better under-
standing, I created a picture:

2

Figure 1: Hinge loss - vectorized implementation

Backward pass Now that we understand how to implement the forward pass, we will deal with a
slightly more di�cult challenge. How to compute the backward pass, that is to say, how to compute
∇wL with a vectorized implementation.

Firstly, we will rewrite our ∆wj
Li to have a better understanding of what the matrix should look

3

like:

∇wj
Li =

[
dLi

dw1

dLi

dw2
. . . dLi

dwC

]
=



dLi

dw11

dLi

dw21
. . . dLi

dwyi1
. . . dLi

dwC1

dLi

dw12

dLi

dw22
. . . dLi

dwyi2
. . . dLi

dwC2

...
. . .

. . .
. . .

. . .
...

dLi

dw1j

dLi

dw2j
. . . dLi

dwyij
. . . dLi

dwCj

...
. . .

. . .
. . .

. . .
...

dLi

dw1D

dLi

dw2D
. . . dLi

dwyiD
. . . dLi

dwCD



=



1(xiw1 − xiwyi + ∆ > 0)xi1 . . . −
∑
j 6=yi

1(xiwj − xiwyi + ∆ > 0)xi1 . . . 1(xiwC − xiwyi + ∆ > 0)xi1

1(xiw1 − xiwyi + ∆ > 0)xi2 . . . −
∑
j 6=yi

1(xiwj − xiwyi + ∆ > 0)xi2 . . . 1(xiwC − xiwyi + ∆ > 0)xi2

...
. . .

. . .
. . .

...

1(xiw1 − xiwyi + ∆ > 0)xij . . . −
∑
j 6=yi

1(xiwj − xiwyi + ∆ > 0)xij . . . 1(xiwC − xiwyi + ∆ > 0)xij

...
. . .

. . .
. . .

...

1(xiw1 − xiwyi
+ ∆ > 0)xiD . . . −

∑
j 6=yi

1(xiwj − xiwyi
+ ∆ > 0)xiD . . . 1(xiwC − xiwyi

+ ∆ > 0)xiD


Now that we see the shape of the matrix is is easy to implement the unvectorized formula. We just
need to:

• construct a matrix of zeros having shape (D,C) (same shape as W)

• assign xi to each column of this matrix if j 6= yi and (xiw1 − xiwyi
+ ∆ > 0)

• assign −
∑
j 6=yi

1(xiwj − xiwyi
+ ∆ > 0)xi to the yi column

Now, the vectorized implementation is slightly harder to compute but fortunately we've already
done the job. Actually we computed in the forward pass (see Forward pass) a matrix having on each
of his element (besides j = yi where it is 0):

(xiwj − xiwyi + ∆ > 0)

So this matrix (let's call it the margin matrix) looks like what we want except that:

1. We want to construct a matrix that has the same shape as the margin matrix and that has 1
when the quantity of each cell of the margin matrix is positive and a zero otherwise

2. We want to construct a matrix that have on each cell of its j = yi column the negative sum of
the indicator function of all the columns (except column yi) of margin matrix

3. We need to multiply this newly created matrix by X (because we see xij is present in each cell
of ∇wj

Li)

So now, it is relatively straightforward:

4

1. We create a matrix of the same size of the margin matrix. Let's call it mask. Then we need
to have 1 on each cell of the mask matrix when the quantity on the corresponding cell of the
margin matrix is positive. In python we can do this using:
mask[margin > 0] = 1

2. Now, we need to change the content of each cell of mask matrix when we are on the yith
column. And we need to put in each row of this yith column the negative value of the sum of
all the value in the other rows. Hence in python we can do that by creating a vector containing
the sum of the column:

np_sup_zero = np.sum(mask, axis = 1)

and then we replace the yith column vector of the mask matrix by this new vector by doing:

mask[np.arange(num_train), y] = −np_sup_zero

3. �nally we need to multiply by X so the �nal matrix is of shape (D,C) the same shape as W.
We know mask's dimension is (N,C) and X's dimension is (N, D) so we need to return XᵀW

Don't forget to divide by the number of training samples and to add the regularization term.

Conclusion Finally we saw how to compute a big matrix gradient and how matrix visualization
can quickly help us elaborate techniques to implement vectorization.

5

