Implementing Convolutional Layer

Victor BUSA victor.busa@gmail.com

April 13, 2017

In this paper, I will describe how a to compute naively the forward and the backward pass in a
convolutional neural network. I based my work on the 2nd assignment of CS231n gave at Stanford in
2016. In this assignment we are asked to compute the forward and backward pass in a convolutional
neural network. We're also asked to compute the forward pass and backward pass on the Max-pool
layer. I won’t detail how to implement it and how to compute it. it is actually straightforward
and looks like the ReLu activation layer. I will instead focus on the forward/backward pass of the
convolutional layer. I will also derive an intuition on how to compute easily the forward pass and
the backward pass of the spatial batch normalization. So let’s go.

Chapter 1

Convolutional Layer

1.1 Forward pass

Although the forward pass isn’t difficult (all the work reside in computing the backward pass), I
think we still need to take our time to understand precisely what quantity is computed during the
forward pass of a convolutional layer. To understand this I made several pictures. But First of all
let’s define the problem.

Problem definition I will use the same dimension as I Stanford class But I will use different
notations. So let’s define our notations:

e Input z of shape (N, C, H, W)
e Weights w of shape (F, C, H1, W1)
e Output a (N, F, H2, W2)
Where :
e N corresponds to the number of images

— (H, W) are respectively the height and the width of the images (they have same height
and width)

— C is the number of channel (here C' = 3 corresponding to RGB)
e F'is the number of filters

— (H1, W1) are respectively the height and the width of the filters (all filters have same
height and width within the same convolutional layer)

— C is the number of channel (here we convolve across all the channel, so the sum (see
after) will include all the channels)

e (H2, W2) are the height and width of the activation map (see how H2 and W2 are computed
later)

Computing the forward pass So now that we set our notations, let’s foucs on the forward pass.
For simplicity we will first consider only one input image and only one channel of the input image.
In such case, during the forward pass of the convolutional layer we have to overlap a filter over our

input image (matrix z). Each time we overlap our filter over z it gives us a number that will be put
at the corresponding place in the activation map. We repeat this processus for all filters. If we have
f filters we will hence have f activation maps. This procedure is detailed in Figure 1.1

Know that we understand what will be computed during the forward pass let’s extend it to ¢ channels
and f filters. If we have ¢ channels, we need to "overlap" a window (our window is our filter) over
our input = and we need to do this for each channel. we then compute the sum of the element-wise
product of my f' filter with each of my c layers. we write this newly computed quantity a; j, -
Indeed this quantity doesn’t depend on ¢ as we sum up over all ¢;, channels. ayp o, refer to one
number of my activation maps. To better understand this principle you can refer to the Figure 1.2
So at the end, using the example of the Figure 1.2, we can write (mathematically):

C Hl1 W1

agon = Z Z Z W i jTe,24(i—1),14+(j—1) T bf (1.1)

c=1i=1 j=1

each of this newly computed number ay .,, will be placed on what we call an "activation map".
And we have F' (number of filters) activation map of size:

H2 = (H — H1 + 2pad)/stride + 1

1.2

W2 = (W — W1+ 2pad)/stride + 1 (1.2)
This formula comes from the course. I won’t detail it as it is quite straightforward and intuitive. So
actually at the end we will have a stack of F' activation maps having in each cells ay ,,. See Figure
1.3.

I omitted to mention it but if we are using the formulas given by relation (1.2), that means that
in relation (1.1) z refers actually to the padded version of x (see course to understand what is the
padded version of). That in mind we might think that the generalize formula for ay , ,, might look
like:

C H1 W1

afhw = Z Z Z wfvc»iajxijlhdJr(if1),w+(j71) +by (1.3)

e=1i=1 j=1

But there is a drawback in this formula. Indeed it works when we are dealing with S = 1 (stride
1) but what if we are using a stride S of 2, 3, ... ? If we are using such stride we will need to
translate our window (filter matrix) by S in vertical and horizontal position to get the next ay .,
hence instead of having to convolve wy ; ; with 2? :ZhdJr (

pad
Lo hS+(i—1),wS+(i—1)

i—1),wt(j—1) We will have to convolve wy ; ; with

and our general formula is just :

C H1 W1
d
afhw = Z Z Z Wi e ns (1) ws+(j-1) + OF (1.4)

c=1i=1 j=1

Nice ! So now we have our general formula to compute the forward pass. Well, not exactly. In the
assignment they are dealing with N images and so x has shape (N, C, H, W). In our formula x
has shape (C, H, W) so it doesn’t fit. Actually our formula works just fine if we are dealing with 1
image. If we are dealing with n images we can still use our formula but we have to take care of our
indexes. Indeed we need to convolve our n'" image (x) with the same w (filter matrix) and we will
get an, fh,w (the activation map w.r.t to the image and to the filter) instead of just ay j, ., so finally
the general formula is:

Filter that we
convolve over
one channel of
the input image

One channel of the input Activation map for 1 image
image (Red, Blue or Green) and one channel

11T

\\
/;/
//
j //
-\ \\
\ —— |

T

Figure 1.1: Forward pass in a Convolutional Layer for one image, one filter and one channel

C H1 W1

_ - epad
An, f,hw = E E : § :wf:cﬂaﬂxn,c,hS-{-(i—l),wS-}-(j—l) + by
c=1i=1 j=1

(1.5)

X111 X1,1,2 X1,13 X114 we have X , w Where the first

% indice c indicates that we are
X1,2,1 X211 X212 X213 X214 Of%% working with the cth channel
S/
X S
131 X001 X222 (X223 X224 we have Wi ¢ 1 w1 Where the
X141 | x X first indice f indicates that we
" 231 X232 |X X X X . . .
\— " ¢1.1 %¢12 %c13 %o1.4 are working with the fi" filter
X241 X242 x Xc.2.2 and the second indice ¢ tells
Il R | XC,1,1 XC,1,2 XC,1,3 XC,1,4 | us that we are doing the

X X i th
c,3,1 %¢,3,2 Xc21 XC,2,2 XC23 XC,2,4 convolution over the ¢

X X channel
c4,1 Xc42
Filters Xc,3,1 XC_3,2 XC,33 XC3,4

Wiy
- |XC,4,1 XC,4,2 XC,4,3 XC,4,4

Wi1,1,1 Wi1,1,2

Hi
Wi 1,21 WE1,2,2

X1,2,1Wf,1,1,1 X1,2,2Wf1 1,2

- a501=SUM X131Wt | X221Wf2 1,1 X2,22Wf2 12
X283 1WE X o 4Wi 11 X 22Wf 12 + by
Wic,1,1 Wic,1,2
X.B1| X0 21Wr 0 1,1 XC,2,2W, 01,2
Wfc,2,1 Wfc,2,2 o o

XC,3,1Wf,C,2,1 XC,32WfC2,2

If we do the convolution of all the ur
squ we end up with a quantity
afh,w

Figure 1.2: Forward pass in a Convolutional Layer

So at the end we will have F' activation maps for each image. See Figure 1.4 for a better under-
standing.

So, now that we understand what quantity is computed during the forward pass, we can implement
it in Python (see code in layers.py)

1.2 Backward pass

So we detailed what quantity was computed during the forward pass but what we really want is to
compute the backward pass. As we know it is always the difficult point. If we have some previous
experiences on convolutional neural network we can do it quite intuitively, or we can used result
share on the internet, but what if we really want to do it ourselves 7 In this part I will use the
relation (1.5) to compute the backward pass in a convolutional layer.

Problem Our goal is to compute the backward pass. Supposing we already have access to the
quantity % using backpropagation of the layers following the convolutional layer, we want to com-
pute the gradient of the loss L w.r.t to the inputs of the convolutional layer. here the inputs are:
x (the images as a tensor), b (the bias shared among filters) and w (the filtering tensor composed of

i W2 > X,
x KR
ar anl .- anwe “or
arp1 ar22 ... A12W2 <,
. U,
H2 ”
a1 Ho1 a1, aA2,12 ... aA2,1,W2 g
T lazpg azpn ... a2ow2 S
.) ,
v 26
ar11 ar12 ... Af1w2 &

A2 H21 A2H22 Or,.
arp1 Af22 ... AF2W2 “

afH2,1 AfH22 ---

dr1,1 Aar,12 ... AF1,W2
drF21 4AF22 ... AF2W2

L dFH2,1 AFH22 --- AF H2,W2
activation map

Figure 1.3: Activation map obtains after convolution

our weights). To make it simple a tensor is a matrix in higher dimension (matrix is a 2-D array,
tensor is a N-D array with N integer)

Computing the backward pass

Gradient of L w.r.t b Let’s start by computing the easiest quantity: dL As bis a blas vector of
shape (F, 1), so do L To compute this quantity as we suppose we have access to 8a7 we will use
the chain rule in hlgher dimension. Hence we have:

Z dL dan,f,h,w
da db,,

n, fohw n, f,h,w
C H1 W1
Wf,e,i, n,c i—1),w + bf (16)
n; dan fohaw db ; ;]Z it hS*(DwS+(j—-1)
dL dby dL
Hf=ul= -
n fz}lw dan ofihow db nf;w d Qn 3fihsw {f } n.;w dan,u,h,w

Hence the column vector (db in python notation) is the sum of BL over all axis beside the second

axis (f here). See code in layers py

Gradient of L w.r.t w The second easiest quantity to compute is 6 . As before we will compute
it using the chain rule. But here we know that w is a (F,C,H1,W1) tensor so we will have:

N

Number of images

1K
<

number of activation maps = F (number of filters)

\'4

Stack of (H2,W2,F)
activation maps for each
image

n,c,hS+(i—1),wS+(j—1) (17)

ar1,1,1 arz,1,1 a12,12 arf1,1 aArfi2 aiF,1,1 a1F,12 a1 F,1,wW2
a112,1 a1221 aA1222 a1f21 A1f22 A1 F21 A1F22 A1 F2wW2
a1,1H2,1 |d12H2,1 A12H22 |A1fH2,1 A1fH22 a1 FH2,1 A1 FH22 --- A1 FH2,W2
a21.1,1 2211 42212 Ad2f11 A2f12 A2F1,1 A2F,12 A2F 1. W2
4212, 2221 A2222 A2f21 A2f22 A2F2,1 A2F22 A2 F2W2
A21H2,1 |A22H2,1 A22H22 |A2fH2,1 A2fH22 A2 FH2,1 A2FH22 --- A2F H2,W2
< W2 >
an,1,1,1 an2,1,1 4aAn2,12 Anf11 Anf,12 ApF,1,1 anF,12 ApF,1.W2
an12,1 an22.1 aAn222 Adnf21 Anf22 ApF2,1 anF22 AdpnF2,W2
Ap,1H2,1 |4n2H2,1 An2H22 |AnfH2,1 AnfH22 ApFH2,1 AnFH22 --- AnFH2,W2
aN,1,1,1 AN2.1,1 aAN212 | ANf1,1 ANf,12 ANF,1,1 A4NF,12 AN F,1. W2
aAN12.1 AN221 aAN222 | ANf21 ANf22 ANF21 4NF22 AN F2.W2
aAN,1 H2,1 |aN2H21 AN2H22 |ANfH2,1 ANfH22 |ANFH2,0 ANFH22 -.- ANFH2,W?2
Figure 1.4: Stack of activation maps for each image in a convolution layer
dL o Z dL danhf,h,w
dw1,c1,h1,w1 Ny dan, f.hw AW 101,01
C H1 Wi
-y YY) _ Wi pad
d dw n,c,hS+(1—1),wS+(j—1)
n, fohw ”fhwclz—ljl fl,cl,hlwl
C H1 W1
d
E T E E E Hf = f1}1{c=cl}1{i = h1}1{j = wl}z?”
n, f,h,w nfhw(:lz:ljfl
z : pad
da 1{f fl}xn,cl,hS+(h1—1),wS+(wl—1)
Qn, f,h,w
n,f,h,w
= L pad
da n,cl,hS+(hl1—1),wS+(wl—1)
n,h,w n,f1,hw

dL
dws1 e1,n1,w1
this quantity for each f1, c1, hl, wl, so the naive implementation will have at least 4 loops.

The naive implementation might have more loops if the quantity we need to compute that is to

__dL _ .pad
say Y. dan e Tl S+ (b —1),wS - (wl—1) here need inner loops. The naive implementation of the

n,h,w

Here we computed So naively to implement the code in Python we will have to compute

code is in layers.py

Gradient of L w.r.t Finally we will deal with the computation of g—é. As before we will
compute it using the chain rule. So we will have to compute:

dL - Z dL da»mf,h;w
dwnl,cl,hl,wl dan,f,h,w dmnl,cl,hl,wl
n, f,h,w
c m owi (1.8)
w P +b
Zh dan Sfroh,w dznl cl,hlwl ; ; le f,c bJ n,c h‘S+(Z 1) wS+(j 1) f

Here we see that the previous relation use both 2P*® and z, so to compute the derivative of 2P*?
pad
n,c,h,w

w.r.t & we will have to find the relationship between zP?¢ and z. So, as we want we will

need to find a relationship between xffg hoaw A Ty o nw. Refer to Figure 1.5 to see this relationship.

So, now that we have this relationship we can easily compute :

Tpl,cl,hl,wl

dr pad
Dnchw 1{n =nl}1{c = c1}1{h — pad = h1}1{w — pad = wl} (1.9)

Tnl,cl,hl,wl

Using (1.9) in (1.8) we finally have:

danfhw
Z da

dmnl ,cl,hl wl n, f,h,w dmnl ,cl,hl wl

n,fhow
C H1 W1 ath(S +(-1)
nc, +(i—1),wS+(j—-1
Wf i,
nfzf;w da Qn, f,h,w ;;jzl J dxnl,cl,hl,wl
dL C H1 W1
=Y T D3> wpeigl{n =n1}i{e=c1}1{hS + (i — 1) — pad = h1}1{wS + (j — 1) — pad = w1}
oo O fihw \ (2155 5
dlL H1 W1
=Y FPa— S wrerij1{hS + (i — 1) = pad = h1}1{wS + (j — 1) — pad = w1}
TR N S e g
dL
= Wwf,cl,pad+h17hS+1,pad+w1*wS+11{]— S pad+ hl — hS + 1 S Hl}l{l S pad + wl — ’IUS + 1 é W].}
fihow DLW

I implemented this in python using the second to last relation in the previous formula. The last
formula is a bit trickier to implement. Finally 2 things I'd like to emphasize. Firstly we have
1{1 < pad+hl—hS+1 < H1} that appear in the last formula because we replace i by pad+hl—hS+1
but ¢ € [1, H1] (see the sum over 7). It is the same thing for j. Secondly I like to point out the
fact that I'm using 1 indexing in my math while in python the index start at 0. That is why in my
implementation of dz in python you don’t see the —1 in hS + (i — 1) — pad = hl.

We want to compute:
X11 X12 X13 X14

dxP X1 Xo1 X23 Xo4
dXn1clhlwl X = X31 X32 X33 X34
X41 X42 X43 X44

According to the figure we see
that if we are in non padding

area of XP% we have:
d
xgi,h+1,w+1 = Xnchw OO0 O O 00O
0Xy1 X12 X3 X14 0 Y
0 X1 X1 X3 Xp4 O

< W o pad = 1

d _
X = 0X31 X33 X33 X34 0 H
0X41 X42 X43 X44 0
OO0 O 0 oOoO
b 4

So generally if we are in non padding area of XP*d we have:

pad _
n,ch+pad,w+pad Xn,c.hw (1)

X
We can also rewrite the previous equation:
d
Xgi,h,w = Xn.c,h—pad,w—pad (2)
The previous relationship works fine when we aren't in the padding area. But if we
are in the padding area, that is to say, if (h —pad < 1) or(w —pad < 1) or
(h —pad > H - 2pad) or (w — pad > W — 2pad) we have:

pad _
Xn,c,h,w =0

Finally Combining (1) and (2) we have:

xPd = Xnch-padw—-pad 1{pad —1 <h <H -pad}1{pad -1 <w <W —pad}

n,c.h,w

Figure 1.5: Relationship between xp,q and x

Chapter 2

Spatial Batch Normalization

2.1 Forward pass

As it is stated in the assignment : "If the feature map was produced using convolutions, then we
expect the statistics of each feature channel to be relatively consistent both between different images
and different locations within the same image. Therefore spatial batch normalization computes a
mean and variance for each of the C feature channels by computing statistics over both the minibatch
dimension N and the spatial dimensions H and W".

That means that for the forward pass if we want to reuse our batch norm implementation that takes
an input of size (N, D) with N being the minibatch dimension we will need to pass an input of size
(N x H x W, C). Having that in mind the forward implementation is straightforward:

wrong code

N, C, H, W = x.shape

—1 1s use to complete with the right dimension

I could have used z.reshape(N«H«W, C)

x_tmp = x.reshape (N«H«W, —1)

gamma ¢ = np.resize (gamma, (C, 1))

beta_c = np.resize (beta, (C, 1))

out, cache = batchnorm forward(x tmp, gamma c, beta c, bn_ param)
out = out.reshape((N, C, H, W))

Well actually the previous code doesn’t work ! T decided to put it here because I made the mistake
myself. What’s wrong with this code ? It’s quite simple. Of course we reshape x to have shape
(N x Hx W, (), but the thing is that x has shape (N,C,H,W), so if we apply reshape() on our
data without swaping our axis such that we have x of shape (N, H, W, C), the reshape function
will reshape our input z with the wrong data. So we need to swap the axis before reshaping the
data (at the end we need to reshape our data and then re-swap the axis) so out is of the same shape
as x was in the being, that is to say: (N,C,H,W). So actually we can come up with the following
code (I used swapaxes but they are better ways do it):

10

N, C, H, W = x.shape

(N, W, H, C) size after swaping azes C and W
X_tmp = np.swapaxes(x, 1, 3)

then we can reshape correctly
x_tmp = x_tmp.reshape (NsWxH, —1)

out tmp, cache = batchnorm forward(x tmp, gamma, beta, bn param)
we do the reverse to have the right shape

out = out_tmp.reshape ((N, W, H, C))
out = np.swapaxes(out, 1, 3)

2.2 Backward pass

I won’t detail the backward pass, if you didn’t do the same mistake that I made during the forward
pass then the backward pass is straightforward. I won’t put the code here. You can see it in

layers.py

Conclusion Here we've learned a lot. We actually see how a Convolutional Layer works. We apply
forward and backward pass and we saw how we can easily reuse previous function to implement new

function in higher dimension.

11

	Convolutional Layer
	Forward pass
	Backward pass

	Spatial Batch Normalization
	Forward pass
	Backward pass

