
Implementing Convolutional Layer

Victor BUSA victor.busa@gmail.com

April 13, 2017

In this paper, I will describe how a to compute naively the forward and the backward pass in a
convolutional neural network. I based my work on the 2nd assignment of CS231n gave at Stanford in
2016. In this assignment we are asked to compute the forward and backward pass in a convolutional
neural network. We're also asked to compute the forward pass and backward pass on the Max-pool
layer. I won't detail how to implement it and how to compute it. it is actually straightforward
and looks like the ReLu activation layer. I will instead focus on the forward/backward pass of the
convolutional layer. I will also derive an intuition on how to compute easily the forward pass and
the backward pass of the spatial batch normalization. So let's go.

1

Chapter 1

Convolutional Layer

1.1 Forward pass

Although the forward pass isn't di�cult (all the work reside in computing the backward pass), I
think we still need to take our time to understand precisely what quantity is computed during the
forward pass of a convolutional layer. To understand this I made several pictures. But First of all
let's de�ne the problem.

Problem de�nition I will use the same dimension as I Stanford class But I will use di�erent
notations. So let's de�ne our notations:

• Input x of shape (N , C, H, W)

• Weights w of shape (F , C, H1, W1)

• Output a (N , F , H2, W2)

Where :

• N corresponds to the number of images

� (H, W) are respectively the height and the width of the images (they have same height
and width)

� C is the number of channel (here C = 3 corresponding to RGB)

• F is the number of �lters

� (H1, W1) are respectively the height and the width of the �lters (all �lters have same
height and width within the same convolutional layer)

� C is the number of channel (here we convolve across all the channel, so the sum (see
after) will include all the channels)

• (H2, W2) are the height and width of the activation map (see how H2 and W2 are computed
later)

Computing the forward pass So now that we set our notations, let's foucs on the forward pass.
For simplicity we will �rst consider only one input image and only one channel of the input image.
In such case, during the forward pass of the convolutional layer we have to overlap a �lter over our

2

input image (matrix x). Each time we overlap our �lter over x it gives us a number that will be put
at the corresponding place in the activation map. We repeat this processus for all �lters. If we have
f �lters we will hence have f activation maps. This procedure is detailed in Figure 1.1

Know that we understand what will be computed during the forward pass let's extend it to c channels
and f �lters. If we have c channels, we need to "overlap" a window (our window is our �lter) over
our input x and we need to do this for each channel. we then compute the sum of the element-wise
product of my f th �lter with each of my c layers. we write this newly computed quantity af,h,w.
Indeed this quantity doesn't depend on c as we sum up over all cth channels. af,h,w refer to one
number of my activation maps. To better understand this principle you can refer to the Figure 1.2
So at the end, using the example of the Figure 1.2, we can write (mathematically):

af,2,1 =

C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jxc,2+(i−1),1+(j−1) + bf (1.1)

each of this newly computed number af,h,w, will be placed on what we call an "activation map".
And we have F (number of �lters) activation map of size:

H2 = (H −H1 + 2pad)/stride+ 1

W2 = (W −W1 + 2pad)/stride+ 1
(1.2)

This formula comes from the course. I won't detail it as it is quite straightforward and intuitive. So
actually at the end we will have a stack of F activation maps having in each cells af,h,w. See Figure
1.3.

I omitted to mention it but if we are using the formulas given by relation (1.2), that means that
in relation (1.1) x refers actually to the padded version of x (see course to understand what is the
padded version of x). That in mind we might think that the generalize formula for af,h,w might look
like:

af,h,w =

C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jx
pad
c,h+(i−1),w+(j−1) + bf (1.3)

But there is a drawback in this formula. Indeed it works when we are dealing with S = 1 (stride
1) but what if we are using a stride S of 2, 3, ... ? If we are using such stride we will need to
translate our window (�lter matrix) by S in vertical and horizontal position to get the next af,h,w,

hence instead of having to convolve wf,i,j with xpad
c,h+(i−1),w+(j−1) we will have to convolve wf,i,j with

xpad
c,hS+(i−1),wS+(j−1) and our general formula is just :

af,h,w =

C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jx
pad
c,hS+(i−1),wS+(j−1) + bf (1.4)

Nice ! So now we have our general formula to compute the forward pass. Well, not exactly. In the
assignment they are dealing with N images and so x has shape (N , C, H, W). In our formula x
has shape (C, H, W) so it doesn't �t. Actually our formula works just �ne if we are dealing with 1
image. If we are dealing with n images we can still use our formula but we have to take care of our
indexes. Indeed we need to convolve our nth image (x) with the same w (�lter matrix) and we will
get an,f,h,w (the activation map w.r.t to the image and to the �lter) instead of just af,h,w, so �nally
the general formula is:

3

Figure 1.1: Forward pass in a Convolutional Layer for one image, one �lter and one channel

an,f,h,w =

C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jx
pad
n,c,hS+(i−1),wS+(j−1) + bf (1.5)

4

Figure 1.2: Forward pass in a Convolutional Layer

So at the end we will have F activation maps for each image. See Figure 1.4 for a better under-
standing.

So, now that we understand what quantity is computed during the forward pass, we can implement
it in Python (see code in layers.py)

1.2 Backward pass

So we detailed what quantity was computed during the forward pass but what we really want is to
compute the backward pass. As we know it is always the di�cult point. If we have some previous
experiences on convolutional neural network we can do it quite intuitively, or we can used result
share on the internet, but what if we really want to do it ourselves ? In this part I will use the
relation (1.5) to compute the backward pass in a convolutional layer.

Problem Our goal is to compute the backward pass. Supposing we already have access to the
quantity ∂L

∂a using backpropagation of the layers following the convolutional layer, we want to com-
pute the gradient of the loss L w.r.t to the inputs of the convolutional layer. here the inputs are:
x (the images as a tensor), b (the bias shared among �lters) and w (the �ltering tensor composed of

5

Figure 1.3: Activation map obtains after convolution

our weights). To make it simple a tensor is a matrix in higher dimension (matrix is a 2-D array,
tensor is a N-D array with N integer)

Computing the backward pass

Gradient of L w.r.t b Let's start by computing the easiest quantity: ∂L
∂b As b is a bias vector of

shape (F , 1), so do L
b . To compute this quantity as we suppose we have access to ∂L

∂a , we will use
the chain rule in higher dimension. Hence we have:

dL

dbu
=

∑
n,f,h,w

dL

dan,f,h,w

dan,f,h,w
dbu

=
∑

n,f,h,w

dL

dan,f,h,w

d

dbu

 C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jx
pad
n,c,hS+(i−1),wS+(j−1) + bf


=

∑
n,f,h,w

dL

dan,f,h,w

dbf
dbu

=
∑

n,f,h,w

dL

dan,f,h,w
1{f = u} =

∑
n,h,w

dL

dan,u,h,w

(1.6)

Hence the column vector ∂L
∂b (db in python notation) is the sum of ∂L

∂a over all axis beside the second
axis (f here). See code in layers.py

Gradient of L w.r.t w The second easiest quantity to compute is ∂L
∂w . As before we will compute

it using the chain rule. But here we know that w is a (F ,C,H1,W1) tensor so we will have:

6

Figure 1.4: Stack of activation maps for each image in a convolution layer

dL

dwf1,c1,h1,w1
=

∑
n,f,h,w

dL

dan,f,h,w

dan,f,h,w
dwf1,c1,h1,w1

=
∑

n,f,h,w

dL

dan,f,h,w

C∑
c=1

H1∑
i=1

W1∑
j=1

dwf,c,i,j

dwf1,c1,h1,w1
xpad
n,c,hS+(i−1),wS+(j−1)

=
∑

n,f,h,w

dL

dan,f,h,w

C∑
c=1

H1∑
i=1

W1∑
j=1

1{f = f1}1{c = c1}1{i = h1}1{j = w1}xpad
n,c,hS+(i−1),wS+(j−1)

=
∑

n,f,h,w

dL

dan,f,h,w
1{f = f1}xpad

n,c1,hS+(h1−1),wS+(w1−1)

=
∑
n,h,w

dL

dan,f1,h,w
xpad
n,c1,hS+(h1−1),wS+(w1−1)

(1.7)

7

Here we computed dL
dwf1,c1,h1,w1

. So naively to implement the code in Python we will have to compute

this quantity for each f1, c1, h1, w1, so the naive implementation will have at least 4 loops.
The naive implementation might have more loops if the quantity we need to compute that is to
say

∑
n,h,w

dL
dan,f1,h,w

xpad
n,c1,hS+(h1−1),wS+(w1−1) here need inner loops. The naive implementation of the

code is in layers.py

Gradient of L w.r.t x Finally we will deal with the computation of ∂L
∂x . As before we will

compute it using the chain rule. So we will have to compute:

dL

dxn1,c1,h1,w1
=

∑
n,f,h,w

dL

dan,f,h,w

dan,f,h,w
dxn1,c1,h1,w1

=
∑

n,f,h,w

dL

dan,f,h,w

d

dxn1,c1,h1,w1

 C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,jx
pad
n,c,hS+(i−1),wS+(j−1) + bf

 (1.8)

Here we see that the previous relation use both xpad and x, so to compute the derivative of xpad

w.r.t x we will have to �nd the relationship between xpad and x. So, as we want
dxpad

n,c,h,w

xn1,c1,h1,w1
we will

need to �nd a relationship between xpad
n,c,h,w and xn,c,h,w. Refer to Figure 1.5 to see this relationship.

So, now that we have this relationship we can easily compute :

dxpad
n,c,h,w

xn1,c1,h1,w1
= 1{n = n1}1{c = c1}1{h− pad = h1}1{w − pad = w1} (1.9)

Using (1.9) in (1.8) we �nally have:

dL

dxn1,c1,h1,w1
=

∑
n,f,h,w

dL

dan,f,h,w

dan,f,h,w
dxn1,c1,h1,w1

=
∑

n,f,h,w

dL

dan,f,h,w

 C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,j

dxpad
n,c,hS+(i−1),wS+(j−1)

dxn1,c1,h1,w1


=

∑
n,f,h,w

dL

dan,f,h,w

 C∑
c=1

H1∑
i=1

W1∑
j=1

wf,c,i,j1{n = n1}1{c = c1}1{hS + (i− 1)− pad = h1}1{wS + (j − 1)− pad = w1}


=

∑
f,h,w

dL

dan1,f,h,w

H1∑
i=1

W1∑
j=1

wf,c1,i,j1{hS + (i− 1)− pad = h1}1{wS + (j − 1)− pad = w1}


=

∑
f,h,w

dL

dan1,f,h,w
wf,c1,pad+h1−hS+1,pad+w1−wS+11{1 ≤ pad+ h1− hS + 1 ≤ H1}1{1 ≤ pad+ w1− wS + 1 ≤W1}

I implemented this in python using the second to last relation in the previous formula. The last
formula is a bit trickier to implement. Finally 2 things I'd like to emphasize. Firstly we have
1{1 ≤ pad+h1−hS+1 ≤ H1} that appear in the last formula because we replace i by pad+h1−hS+1
but i ∈ [1, H1] (see the sum over i). It is the same thing for j. Secondly I like to point out the
fact that I'm using 1 indexing in my math while in python the index start at 0. That is why in my
implementation of dx in python you don't see the −1 in hS + (i− 1)− pad = h1.

8

Figure 1.5: Relationship between xpad and x

9

Chapter 2

Spatial Batch Normalization

2.1 Forward pass

As it is stated in the assignment : "If the feature map was produced using convolutions, then we
expect the statistics of each feature channel to be relatively consistent both between di�erent images
and di�erent locations within the same image. Therefore spatial batch normalization computes a
mean and variance for each of the C feature channels by computing statistics over both the minibatch
dimension N and the spatial dimensions H and W".
That means that for the forward pass if we want to reuse our batch norm implementation that takes
an input of size (N , D) with N being the minibatch dimension we will need to pass an input of size
(N ×H ×W , C). Having that in mind the forward implementation is straightforward:

wrong code
N, C, H, W = x . shape
−1 i s use to complete wi th the r i g h t dimension
I cou ld have used x . reshape (N∗H∗W, C)
x_tmp = x . reshape (N∗H∗W, −1)
gamma_c = np . r e s i z e (gamma, (C, 1))
beta_c = np . r e s i z e (beta , (C, 1))
out , cache = batchnorm_forward (x_tmp , gamma_c, beta_c , bn_param)
out = out . reshape ((N, C, H, W))

Well actually the previous code doesn't work ! I decided to put it here because I made the mistake
myself. What's wrong with this code ? It's quite simple. Of course we reshape x to have shape
(N × H ×W , C), but the thing is that x has shape (N ,C,H,W), so if we apply reshape() on our
data without swaping our axis such that we have x of shape (N , H, W , C), the reshape function
will reshape our input x with the wrong data. So we need to swap the axis before reshaping the
data (at the end we need to reshape our data and then re-swap the axis) so out is of the same shape
as x was in the being, that is to say: (N ,C,H,W). So actually we can come up with the following
code (I used swapaxes but they are better ways do it):

10

N, C, H, W = x . shape

(N, W, H, C) s i z e a f t e r swaping axes C and W
x_tmp = np . swapaxes (x , 1 , 3)

then we can reshape c o r r e c t l y
x_tmp = x_tmp . reshape (N∗W∗H, −1)

out_tmp , cache = batchnorm_forward (x_tmp , gamma, beta , bn_param)

we do the r e v e r s e to have the r i g h t shape
out = out_tmp . reshape ((N, W, H, C))
out = np . swapaxes (out , 1 , 3)

2.2 Backward pass

I won't detail the backward pass, if you didn't do the same mistake that I made during the forward
pass then the backward pass is straightforward. I won't put the code here. You can see it in
layers.py

Conclusion Here we've learned a lot. We actually see how a Convolutional Layer works. We apply
forward and backward pass and we saw how we can easily reuse previous function to implement new
function in higher dimension.

11

	Convolutional Layer
	Forward pass
	Backward pass

	Spatial Batch Normalization
	Forward pass
	Backward pass

