Implementing Batch Normalization

Victor BUSA victor.busa@gmail.com

April 12, 2017

In this paper, I will describe how the gradient flow through the batch normalization layer. This work
is based on the course gave at Stanford in 2016 (cs231n class about Convolutional Neural Network).
Actually, one part of the 2nd assignment consist in implementing the batch normalization procedure.
In my previous paper I didn’t use a flowchart. Here I will use one so everybody can understand
precisely how one can implement batch normalization precisely. Also I will derive the python code
associated with each part. Note that the full code is in layers.py of assignment2. Finally I will also
implement a faster way of computing the backward pass.

Chapter 1

Backward pass: Naive
implementation

1.1 Batch normalization flowchart

std (D,1)

Python variables Paper variables

out y

x_norm b

Xftpm Xtmp X(mp (N!D)
std std

var o2

mu [B o

beta &

out (N,D)

JdL
—— =dout
dout ou

Figure 1.1: Graph of Batch Normalization layer

The Forward pass of the Batch normalization is straightforward. We just have to look at Figure 1
and implement the code in Python so I will directly focus on the backward pass. Let’s first define
some notations:

e [design the loss (the quantity computed at the end of all the layers in a neural network)

o 2—5 correspond to the gradient of the loss L relatively to the last quantity computed during

the forward pass of the batch normalization procedure. Note that in python we write dout to
design such derivative (dout is then the gradient of L w.r.t y)

e to make it clear each time I write dz (python notation) it will correspond to the gradient of

the loss L w.r.t to x, hence dz = ‘2,—5

e 1z is a N x D matrix. Where N is the size of the batch.

So, now that we have defined our notations. Let’s define the problem. What do we want? Actually
during the backward pass we want the gradient of L w.r.t to all the inputs we used to compute y.
By looking at Figure 1, we see that we want 3 different gradients:

. % = %% (in python notation: dbeta)
. % = %% (in python notation: dgamma)

. % = g—’;% (in python notation: dz)
As we already know dout (2—5), we just have to compute the partial derivatives of y w.r.t the inputs
B, v, x. Let’s start to compute the backward pass through each step of the Figure 1.

1.2 Computation of dbeta

oL i i ite: 9L _ 9L Oy oL
We want to compute 3 i By using chain rule we can write: o5 = oy 95" As we already know by

(dout), we only need to compute %' However we can notice that y is a (N,D) matrix and 3 is a

(N,1) vector. So we can compute g—g directly. We will instead focus on computing Vi € [1, D], %-

To do so we use the chain rule in higher dimension.
But let’s first see what the y matrix looks like. Indeed, we need to pay attention to the fact that y
is obtained using row-wise summation/multiplication:

y=707r+p

where [used ® to highlight the fact that in this relation we are dealing with a row-wise multiplication.
So, now let’s visualize y:

(71 [T11 T2 ... 1D [B1]
2 T21 X222 ... Z2D B2
Y= © +
YD TN1 TN2 ... TND Bp
[z + 81 7eri2+B2 ... Yprip+ D]
mx21 + 61 Yexe2+ B2 ... 7prap+ PBp (1.1)
4
T | mak + B verke+Be ... YpTep + Bp
mzyt+ 81 yerNe+B2 ... Yprnp + 6D
now that we see what y looks like we can easily notice that
‘ Ay AT+ 61) dB .
Viel[l,D = = =1{i=1
el s, a6 ag; =l
We can now use the chain rule in higher dimension to compute %:
dL - dL dykl
df; 4~ dyk dp;
' (1.2)
dL dL
> - -
Kl Ykl o Yk

Finally we have that % is a (D,1) vector (same shape as () that has on each cell the sum of

the corresponding row of % (dout). In python we can compute this quantity using this piece of
code:

Gradient flowing along beta azes
dbeta = np.sum(dout, axis=0)

Gradient flowing along xtmp axes
dx tmp = dout

We can retain that:

e The first gate being an additive gate we only need to multiply the output gradient (y) by 1 to
get the gradient that flows through x4, axes.

e If we are doing a row-wise summation during the forward pass, we will need to sum up the
flowing gradient over all columns during the backward pass.

1.3 Computation of dgamma

We want to compute %. Once again we will use chain rule: % = aaiL azat%. We already know
mp

OL _ 9L (_ ; : . OTemp _ Oy

Tines = Oy (= dout) according to the previous paragraph. So we only need to compute: ot = 5.

As yis a (N,D) and v is a (D,1) vector we will use the chain rule in higher dimension to compute
this quantity:

dL _Z dL dykl
k,l

dry; dyrr dyi
_ dL d(viTw + 6r)
DD e (1.3)
ol Ykl Vi
dL dL
=N P alli=1) = B
7 Yk wl } ;dym‘ i

Finally we have that ‘g—f; is a (D,1) vector (same shape as «) that has on each cell the sum of the
row of the 7 matrix. In python we can compute this quantity using this piece of code:

Gradient flowing along gamma axes
dgamma = np.sum(dout * x norm, axis=0)

Gradient flowing along z_norm azes
dx_norm = gamma #* dout

1.4 Computation of dx

To get the gradient of L w.r.t we need to backpropgate the gradient through each gate of the
Figure 1

1.4.1 First we need to compute -2 = dzcl

Oxcq

oL __ 9L oz

. oL _ _
Boc. = 0% Do WO already know according to step 2 that 5= = dz_norm = gamma * dout, so we

have:
° a‘? = std~! and then the gradient passed along x., axes is dvcl = dx_norm * std~*
€1
A N N
° a‘zfd = 231 x.xstd~? and the gradient passed along std axes is dstd = —dx_normsx 2:1 Toxstd?
1= 1=

Why do we have a summation over N for the gradient that flows along std axes ? For the same
reason as previously we need to use the chain rule in higher dimension:

dL dzy
dstd Z dz; dstd;

dlL d‘f%z 1
= Z Lo Tt _ Z Ty, <) (1.4)
" dZy,; dstd; dl‘kl dstd; \ stdy
dL
= — Z mckl Wk = z}std_ &, iEc,lStd_

Note that we can divide the z.,
can implement this gradient using:

Gradient flowing along std azes

dstd = —np.sum(dx_norm x xc * (std x*x —2), axis=0)

Gradient flowing along zcl azxes
dxcl = dx_norm #* (std =*x —1)

1.4.2 Then we compute % = dvar

Again we apply chain rule: (f?{ﬂ = azf 5 %‘jff. We already know aas% - via the previous computation.
Let’s then compute: %3’55[:

Ostd 0 2 -1 -1

902 — 992 (\/02 + e) =1/2%(c"4+¢€)7 " =1/2xstd

so finally we have: % = 1/2 % dstd * std~! and in python we can write:

Gradient flowing along var azes
dvar = 0.5 * dstd * (std =*x —1)

1.4.3 We also need to compute ;2-- = dzc2
€2

. 2 . 2 .
By chain rule we have: 2 = 9L 99 55 we just need to compute: 27—. But here o2 is a vector
o o o

o
vk € [1,N], Vi € [1, D]:
l

and z., is a matrix so we will instead compute aaL

dL__ - dL_do}
dzca,, - do? dza,,
N
dL 1 d 5 dL 2
B do? N di,, (z_:l 02Pi> - Z do2 Nl{l i} e (1.5)
2 dL
T NdoZ'
1

So finally we can easily see that in term of matrix multiplication we have : a‘ZL = dvar * %wc In
c2

python we can write:

Gradient flowing along xc2 axes

very important 2.0 / N and not 2 / N
because we are wusing python 2.7

dxc2 = (2.0 / N) % dvar * xc

1.4.4 Again we need g_ch =dmu

here we have two different gradients that are coming to the p — z — p gate so we have to add those

: ; oL _ L oL _ dL -1, 2 9L
two different gradients. So we have Bor = Do, T B2 — 03 * std™" + § 5547 * Tc In python we

have:

dxc = dxcl + dzc2 (two incoming gradients)
dxc = dxcl + dxc2 # (= dx_normxstd+«x—1 + (2 / N) x dvar *x zc)

Also, using the same procedure as in step 1 and 2, the gradient that flows to p is the sum over N of

N
the incoming gradient: g—ﬁ =— " 52, Hence in python we have:
i=1

Gradient flowing along mu azes
dmu = —np.sum(dxc, axis=0)

1.4.5 Finally we are able to compute g—ﬁ =dx

Finally we can recover %' Again using the chain rule and the fact that the last gate receives 2

incoming gradients, we have:

0L _OLOu | OL s,
dxr Oudx Oz, Ox

Let’s compute g—g first. As p is a vector and z is a matrix we will instead compute £—L using the
k,l

chain rule in higher dimension. Note that this term will refer only to g—Lg—", I will compute g—L %’“’C
w Ox r. Ox

just after:

Z L dy;
dmkl dp; dryy

N
dL 1 dL 1
) = 1
Zd,u N dz (;x”> an N =
_1adl
~ Ndw

So finally rewriting with matrix notations we have :

oLOu _ 10L
oudr N Ou
B oL Ox. .
Then, now let’s compute Pos P
oL 0x. OL Odx. OL 0 oL

Here Iy p is the identity matrix of size (N, D). Finally we have:

o _ 1oL oL
dr Nou Oz,

In python we can write:

r. 0~ On. 0w Ow.ox LM = gy Ive =

i}

oL

O,

(1.7)

#final gradient dL/dz
dx = dxc + dmu / N

Chapter 2

Backward pass: Faster
implementation

In this part we will derive a faster implementation of the backward pass using the chain rule in
higher dimension. We will first define the problem correctly. I will use the notation of the CS231n
assignment to be sure we agree on the same notations.

2.1 Goal

Our objective didn’t change. We still want to compute %, % and %. We already saw in the first

part how to compute % and % directly. We will hence only focus on how to compute g—i straight
away.

2.2 Problem

Before attacking the problem, let’s define it correctly: We have :

— - - - o1
11 %12 ... T -.-- X1D H1
022
21 T22 . Ty . Ta2p M2
X = on = 02 == Uk2
Tkl Tk ‘e Tkl ‘e TED Mk
O’D2
N1 IN2 ... INI ... IND HUD

so actually when we are writing
rT—p

Vo?+e

8)
I

it actually means that Vk € [1, N], Vi € [1, D]

Ty = (zp — Ml)(02l + 6)71/2

We want to compute %. To do so we will use the chain rule in higher dimension:

dL - dL d:z:kl
dl’ij KE[LN] dSUkl d{EU
l1€1,D]
We don’t know the derivatives in the summation and we don’t know how to compute %’il because

we don’t have access to L directly. Yet we have access to % (that is our dout in Python notation).
So we will introduce this term in the chain rule and it give us:
dL dL dyy, dx
_ - dg{kl y Kl 2.1)
ke[LN] Ykl AT] QX455
l€[1,D]

dacij

d

dyit T because we have access to the expression of
ij

So now we will only need to compute oo, and
both y and z. So let’s do it:

d dviZTr +
Ykt _ ANk Bi _ (2.2)
dzy Az

That one was straightforward ! Now let’s compute the other derivative:

dTg d(zg —) * (0% +€)7/2

dz;; dz;;
d(x 5; o d(O.Q + 6)_1/2 (23)
_ kl — M 2 —1/2 _ l
dz; (051 +¢) + (wrr —) .
So now let’s compute the first derivative:
N
d — d d d 1
(T —) _ dog dp ek =1} — B
dx;; dzr;; dxij dz;; \ N = (2.4)
1
=li=k j=1}—=1{y=1
fi=k j=1) - $1i=1)
This one was quite straightforward, let’s handle the other derivative:
d(UlQ + 5)_1/2 1 d(012 +€), - —3/2
_ - 2.5
das, 2 dry (07 +€) (2.5)
So we need to compute %:6):
d(o? +€) d (1 & 5
SO L (D = m)
dJCZ‘j :Eij N =1
(2.6)

al d
Z(qu - Nl>r(qu —)
g=1

scij

2w

10

Using equation (2.4) we have:

N
d((;lmﬂ = %Z (g —) (i = q. j —l}——l{g .
2 o ; .) 1 & .
= N [;(qu - Ml)]-{'é =4q,)= l} — N ;({L‘ql — Ml)]-{] — l})] (27)

2

=N [(fﬂiz —)i =1} - %1{3' =1} (;fﬂql - Nl)]

To simplified even more this last expression, let’s focus on the sum:

N N N
§ Tgr — M1 = E Tgl — E i
q=1 q=1 g=1

(2.8)
N
£ N —mzlsz —Np =0
q=1
So finally, the second term in (2.7) disappear and we have:
d(o? +e) 2)
= Z (g — 147 =1 2.9
Combining (2.3), (2.5) and (2.9) we finally have:
d(c? + ¢)~1/2 . . 1., . _ 1 _ .
(ldxij) - (1{1 =k j=U-gHi= l}> (07 +¢)71/% — ~ (@ +) +€) 2 (g —)G =1}
(2.10)
Finally we can recover the full g—é using (2.1), (2.2), (2.10) and we have:
dL o dL dykl dZ/L’\kl
da;j b dyr dzy; dxgj
1€[1,D]
_ dL 7]{3 7[7i 71 2 71/27i 2 73/2 o 7Z
= Z —y | |[Hi=k j=1} H{j =1} (o7 +¢) (@it + m)(o7 +€) 7 (@ —) 1{j =1}
dyri N N
ke[1,N]
l€[1,D]

- Z diyl {1{1' =k, j=1} - %1{1' = l}] (of +)72

ke[1,N] i
1€[1,D]

1 .
Z —w (w0 +) (07 + €)% 2 (i —) 1{j =1}
kE[L,N
le(l, D]

1 Y dL 1 Y d
= N(UIQ +e) 2y E %(1{1' =k}N —1) - N(JIQ +6) 2 (wij — py) E : i (Tks — 115)
N N N
1 dL . dL dL
=55+ —1/2y ([> d— = E Ty (07 + &) (wij — 1j) Y _(xkj—uj)>
k=

_ Loy, i
N dy,J —

dyk] 1 dykj

N
(07 +¢€)~ (xij—ﬂj)z I (xkj_ﬂj)>

11

So Finally we could have come up with a expression for dd—L. We just need to recall that % is a

Tij
(N,D) matrix (same shape as) that looks like:
r dL dL dL dL 7
dxyy dxi2 e dxyy e dxi1p
dL dL dL dL
dxay dxaz e dxay e drap
dL dL dL dL (2]‘1)
dzy drge 777 dwgr "7 dxkp
dL dL dL dL
dx N1 denz 7" dxny 77 dxnD

Having this in mind we can actually come up with the python implementation that looks like:

~

N = dout.shape[0]

dx = (1. / N) % (var + eps)xx(—1./2) % gamma \

* (N % dout — np.sum(dout, axis=0)\

— (var + eps)xx(—1.0) * (x — mu.T) \
x np.sum(dout * (x — mu.T), axis=0))

dbeta = np.sum(dout, axis=0)

dgamma = np.sum(dout * x norm, axis=0)

2.3 Conclusion

We saw how we can implement batch normalization in Python. To do so we have drawn a graph of
all the elementary operations we needed to compute the forward pass. The backward pass can then
be computed directly using this graph. The thing to retain is that we used the chain rule in higher
dimension all along. Once we understand how it works it is quite straightforward.

12

	Backward pass: Naive implementation
	Batch normalization flowchart
	Computation of dbeta
	Computation of dgamma
	Computation of dx
	First we need to compute Lxc1 = dxc1
	Then we compute L2 = dvar
	We also need to compute Lxc2 = dxc2
	Again we need Lxc = dmu
	Finally we are able to compute Lx = dx

	Backward pass: Faster implementation
	Goal
	Problem
	Conclusion

