
Implementing Batch Normalization

Victor BUSA victor.busa@gmail.com

April 12, 2017

In this paper, I will describe how the gradient �ow through the batch normalization layer. This work
is based on the course gave at Stanford in 2016 (cs231n class about Convolutional Neural Network).
Actually, one part of the 2nd assignment consist in implementing the batch normalization procedure.
In my previous paper I didn't use a �owchart. Here I will use one so everybody can understand
precisely how one can implement batch normalization precisely. Also I will derive the python code
associated with each part. Note that the full code is in layers.py of assignment2. Finally I will also
implement a faster way of computing the backward pass.

1

Chapter 1

Backward pass: Naive

implementation

1.1 Batch normalization �owchart

Figure 1.1: Graph of Batch Normalization layer

The Forward pass of the Batch normalization is straightforward. We just have to look at Figure 1
and implement the code in Python so I will directly focus on the backward pass. Let's �rst de�ne
some notations:

2

• L design the loss (the quantity computed at the end of all the layers in a neural network)

• ∂L
∂y correspond to the gradient of the loss L relatively to the last quantity computed during
the forward pass of the batch normalization procedure. Note that in python we write dout to
design such derivative (dout is then the gradient of L w.r.t y)

• to make it clear each time I write dx (python notation) it will correspond to the gradient of
the loss L w.r.t to x, hence dx = ∂L

∂x

• x is a N ×D matrix. Where N is the size of the batch.

So, now that we have de�ned our notations. Let's de�ne the problem. What do we want? Actually
during the backward pass we want the gradient of L w.r.t to all the inputs we used to compute y.
By looking at Figure 1, we see that we want 3 di�erent gradients:

• ∂L
∂β = ∂L

∂y
∂y
∂β (in python notation: dbeta)

• ∂L
∂γ = ∂L

∂y
∂y
∂γ (in python notation: dgamma)

• ∂L
∂x = ∂L

∂y
∂y
∂x (in python notation: dx)

As we already know dout (∂L∂y), we just have to compute the partial derivatives of y w.r.t the inputs
β, γ, x. Let's start to compute the backward pass through each step of the Figure 1.

1.2 Computation of dbeta

We want to compute ∂L
∂β . By using chain rule we can write: ∂L

∂β = ∂L
∂y

∂y
∂β . As we already know ∂L

∂y

(dout), we only need to compute ∂y
∂β . However we can notice that y is a (N,D) matrix and β is a

(N,1) vector. So we can compute ∂y
∂β directly. We will instead focus on computing ∀i ∈ [1, D], ∂y

∂βi
.

To do so we use the chain rule in higher dimension.
But let's �rst see what the y matrix looks like. Indeed, we need to pay attention to the fact that y
is obtained using row-wise summation/multiplication:

y = γ � x̂+ β

3

where I used� to highlight the fact that in this relation we are dealing with a row-wise multiplication.
So, now let's visualize y:

y =



γ1

γ2

...

γD


�



x11 x12 . . . x1D

x21 x22 . . . x2D

...
. . .

. . .
...

xN1 xN2 . . . xND


+



β1

β2

...

βD



=



γ1x11 + β1 γ2x12 + β2 . . . γDx1D + βD

γ1x21 + β1 γ2x22 + β2 . . . γDx2D + βD

...
. . .+

. . .
...

γ1xk1 + β1 γ2xk2 + β2 . . . γDxkD + βD

...
. . .

. . .
...

γ1xN1 + β1 γ2xN2 + β2 . . . γDxND + βD



(1.1)

now that we see what y looks like we can easily notice that

∀i ∈ [1, D]
dykl
dβi

=
d(γlx̂kl + βl)

dβi
=
dβl
dβi

= 1{i = l}

We can now use the chain rule in higher dimension to compute ∂L
∂βi

:

dL

dβi
=
∑
k,l

dL

dykl

dykl
dβi

=
∑
k,l

dL

dykl
1{i = l} =

∑
k

dL

dyki

(1.2)

Finally we have that ∂L
∂β is a (D,1) vector (same shape as β) that has on each cell the sum of

the corresponding row of ∂L
∂y (dout). In python we can compute this quantity using this piece of

code:

Gradient f l ow ing a long be ta axes
dbeta = np .sum(dout , ax i s=0)

Gradient f l ow ing a long xtmp axes
dx_tmp = dout

We can retain that:

• The �rst gate being an additive gate we only need to multiply the output gradient (y) by 1 to
get the gradient that �ows through xtmp axes.

4

• If we are doing a row-wise summation during the forward pass, we will need to sum up the
�owing gradient over all columns during the backward pass.

1.3 Computation of dgamma

We want to compute ∂L
∂γ . Once again we will use chain rule: ∂L

∂γ = ∂L
∂xtmp

∂xtmp

∂γ . We already know
∂L

∂xtmp
= ∂L

∂y (= dout) according to the previous paragraph. So we only need to compute:
∂xtmp

∂γ = ∂y
∂γ .

As y is a (N,D) and γ is a (D,1) vector we will use the chain rule in higher dimension to compute
this quantity:

dL

dγi
=
∑
k,l

dL

dykl

dykl
dγi

=
∑
k,l

dL

dykl

d(γlx̂kl + βl)

dγi

=
∑
k,l

dL

dykl
x̂kl1{i = l} =

∑
k

dL

dyki
x̂ki

(1.3)

Finally we have that ∂L
∂γ is a (D,1) vector (same shape as γ) that has on each cell the sum of the

row of the γx̂ matrix. In python we can compute this quantity using this piece of code:

Gradient f l ow ing a long gamma axes
dgamma = np .sum(dout ∗ x_norm , ax i s=0)

Gradient f l ow ing a long x_norm axes
dx_norm = gamma ∗ dout

1.4 Computation of dx

To get the gradient of L w.r.t x we need to backpropgate the gradient through each gate of the
Figure 1

1.4.1 First we need to compute ∂L
∂xc1

= dxc1

∂L
∂xc1

= ∂L
∂x̂

∂x̂
∂xc1

. we already know according to step 2 that ∂L
∂x̂ = dx_norm = gamma ∗ dout, so we

have:

• ∂x̂
∂xc1

= std−1 and then the gradient passed along xc1 axes is dxc1 = dx_norm ∗ std−1

• ∂x̂
∂std =

N∑
i=1

xc∗std−2 and the gradient passed along std axes is dstd = −dx_norm∗
N∑
i=1

xc∗std−2

Why do we have a summation over N for the gradient that �ows along std axes ? For the same
reason as previously we need to use the chain rule in higher dimension:

5

dL

dstdi
=
∑
k,l

dL

dx̂kl

dx̂kl
dstdi

=
∑
k,l

dL

dx̂kl

d
xckl

stdk

dstdi
=
∑
k,l

dL

dx̂kl
xckl

d

dstdi

(
1

stdk

)
= −

∑
k,l

dL

dx̂kl
xckl

1{k = i}std−2l =
∑
l

dL

dx̂il
xcilstd

−2
i

(1.4)

Note that we can divide the xc, std→ xc

std gate into a multiply and a reverse gate. In python we
can implement this gradient using:

Gradient f l ow ing a long s t d axes
dstd = −np .sum(dx_norm ∗ xc ∗ (std ∗∗ −2) , ax i s=0)

Gradient f l ow ing a long xc1 axes
dxc1 = dx_norm ∗ (std ∗∗ −1)

1.4.2 Then we compute ∂L
∂σ2 = dvar

Again we apply chain rule: ∂L
∂σ2 = ∂L

∂std
∂std
∂σ2 . We already know ∂L

∂std via the previous computation.

Let's then compute: ∂std
∂σ2 :

∂std

∂σ2
=

∂

∂σ2

(√
σ2 + ε

)
= 1/2 ∗ (σ2 + ε)−1 = 1/2 ∗ std−1

so �nally we have: ∂L
∂σ2 = 1/2 ∗ dstd ∗ std−1 and in python we can write:

Gradient f l ow ing a long var axes
dvar = 0 .5 ∗ dstd ∗ (std ∗∗ −1)

1.4.3 We also need to compute ∂L
∂xc2

= dxc2

By chain rule we have: ∂L
∂xc2

= ∂L
∂σ2

∂σ2

∂xc2
, so we just need to compute: ∂σ2

∂xc2
. But here σ2 is a vector

and xc2 is a matrix so we will instead compute ∂L
∂xc2kl

∀k ∈ [1, N], ∀l ∈ [1, D]:

dL

dxc2kl

=
∑
i

dL

dσ2
i

dσ2
i

dxc2kl

=
∑
i

dL

dσ2
i

1

N

d

dxc2kl

(
N∑
p=1

x2c2pi

)
=
∑
i

dL

dσ2
i

2

N
1{l = i}xc2kl

=
2

N

dL

dσ2
l

xc2kl

(1.5)

6

So �nally we can easily see that in term of matrix multiplication we have : ∂L
∂xc2

= dvar ∗ 2
N xc In

python we can write:

Gradient f l ow ing a long xc2 axes
very important 2 .0 / N and not 2 / N
because we are us ing python 2.7
dxc2 = (2 . 0 / N) ∗ dvar ∗ xc

1.4.4 Again we need ∂L
∂xc

= dmu

here we have two di�erent gradients that are coming to the µ→ x−µ gate so we have to add those
two di�erent gradients. So we have ∂L

∂xc
= ∂L

∂xc1
+ ∂L

∂xc2
= ∂L

∂x̂ ∗ std
−1 + 2

N
∂L
∂var ∗ xc In python we

have:

dxc = dxc1 + dxc2 (two incoming g rad i en t s)
dxc = dxc1 + dxc2 # (= dx_norm∗ s t d ∗∗−1 + (2 / N) ∗ dvar ∗ xc)

Also, using the same procedure as in step 1 and 2, the gradient that �ows to µ is the sum over N of

the incoming gradient: ∂L
∂µ = −

N∑
i=1

∂L
∂xcij

, Hence in python we have:

Gradient f l ow ing a long mu axes
dmu = −np .sum(dxc , ax i s=0)

1.4.5 Finally we are able to compute ∂L
∂x

= dx

Finally we can recover ∂L
∂x . Again using the chain rule and the fact that the last gate receives 2

incoming gradients, we have:

∂L

∂x
=
∂L

∂µ

∂µ

∂x
+
∂L

∂xc

∂xc
∂x

Let's compute ∂µ
∂x �rst. As µ is a vector and x is a matrix we will instead compute ∂L

∂xk,l
using the

chain rule in higher dimension. Note that this term will refer only to ∂L
∂µ

∂µ
∂x , I will compute ∂L

∂xc

∂xc

∂x
just after:

7

dL

dxkl
=
∑
i

dL

dµi

dµi
dxkl

=
∑
i

dL

dµi

1

N

d

dxkl

(
N∑
p=1

xpi

)
=
∑
i

dL

dµi

1

N
1{l = i}

=
1

N

dL

dµl

(1.6)

So �nally rewriting with matrix notations we have :

∂L

∂µ

∂µ

∂x
=

1

N

∂L

∂µ

Then, now let's compute ∂L
∂xc

∂xc

∂x :

∂L

∂xc

∂xc
∂x

=
∂L

∂xc

∂xc
∂x

=
∂L

∂xc

∂

∂x
(x− µ) = ∂L

∂xc
IND =

∂L

∂xc
(1.7)

Here IND is the identity matrix of size (N , D). Finally we have:

∂L

∂x
=

1

N

∂L

∂µ
+
∂L

∂xc

In python we can write:

#f i n a l g rad i en t dL/dx
dx = dxc + dmu / N

8

Chapter 2

Backward pass: Faster

implementation

In this part we will derive a faster implementation of the backward pass using the chain rule in
higher dimension. We will �rst de�ne the problem correctly. I will use the notation of the CS231n
assignment to be sure we agree on the same notations.

2.1 Goal

Our objective didn't change. We still want to compute ∂L
∂x ,

∂L
∂γ and ∂L

∂β . We already saw in the �rst

part how to compute ∂L
∂γ and ∂L

∂β directly. We will hence only focus on how to compute ∂L
∂x straight

away.

2.2 Problem

Before attacking the problem, let's de�ne it correctly: We have :

X =



x11 x12 . . . x1l . . . x1D

x21 x22 . . . x2l . . . x2D

...
. . .

. . .
. . .

...

xk1 xk2 . . . xkl . . . xkD

...
. . .

. . .
. . .

...

xN1 xN2 . . . xNl . . . xND



µ =



µ1

µ2

...

µk

...

µD



σ2 =



σ1
2

σ2
2

...

σk
2

...

σD
2


so actually when we are writing

x̂ =
x− µ√
σ2 + ε

9

it actually means that ∀k ∈ [1, N], ∀i ∈ [1, D]

x̂kl = (xkl − µl)(σ2
l + ε)−1/2

We want to compute ∂L
∂x . To do so we will use the chain rule in higher dimension:

dL

dxij
=

∑
k∈[1,N]
l∈[1,D]

dL

dx̂kl

dx̂kl
dxij

We don't know the derivatives in the summation and we don't know how to compute dL
dx̂kl

because

we don't have access to L directly. Yet we have access to dL
dy (that is our dout in Python notation).

So we will introduce this term in the chain rule and it give us:

dL

dxij
=

∑
k∈[1,N]
l∈[1,D]

dL

dykl

dykl
dx̂kl

dx̂kl
dxij

(2.1)

So now we will only need to compute dykl

dx̂kl
, and dx̂kl

dxij
because we have access to the expression of

both y and x̂. So let's do it:
dykl
dx̂kl

=
dγlx̂kl + βl

dx̂kl
= γl (2.2)

That one was straightforward ! Now let's compute the other derivative:

dx̂kl
dxij

=
d(xkl − µl) ∗ (σ2

l + ε)−1/2

dxij

=
d(xkl − µl)

dxij
(σ2

l + ε)−1/2 + (xkl − µl)
d(σ2

l + ε)−1/2

dxij

(2.3)

So now let's compute the �rst derivative:

d(xkl − µl)
dxij

=
dxkl
dxij

− dµl
dxij

= 1{i = k, j = l} − d

dxij

(
1

N

N∑
i=1

xil

)

= 1{i = k, j = l} − 1

N
1{j = l}

(2.4)

This one was quite straightforward, let's handle the other derivative:

d(σ2
l + ε)−1/2

dxij
= −1

2

d(σ2
l + ε)

dxij
(σ2
l + ε)−3/2 (2.5)

So we need to compute
d(σ2

l +ε)
dxij

:

d(σ2
l + ε)

dxij
=

d

xij

(
1

N

N∑
q=1

(xql − µl)2
)

=
2

N

N∑
q=1

(xql − µl)
d

dxij
(xql − µl)

(2.6)

10

Using equation (2.4) we have:

d(σ2
l + ε)

dxij
=

2

N

N∑
q=1

(xql − µl)(1{i = q, j = l} − 1

N
1{j = l})

=
2

N

[
N∑
q=1

(xql − µl)1{i = q, j = l} − 1

N

N∑
q=1

(xql − µl)1{j = l})

]

=
2

N

[
(xil − µl)1{j = l} − 1

N
1{j = l}

(
N∑
q=1

xql − µl

)]
(2.7)

To simpli�ed even more this last expression, let's focus on the sum:

N∑
q=1

xql − µl =
N∑
q=1

xql −
N∑
q=1

µl

, Nµl − µl
N∑
q=1

1 = Nµl −Nµl = 0

(2.8)

So �nally, the second term in (2.7) disappear and we have:

d(σ2
l + ε)

dxij
=

2

N
(xil − µl)1{j = l} (2.9)

Combining (2.3), (2.5) and (2.9) we �nally have:

d(σ2
l + ε)−1/2

dxij
=

(
1{i = k, j = l} − 1

N
1{j = l}

)
(σ2
l + ε)−1/2 − 1

N
(xkl + µl)(σ

2
l + ε)−3/2(xil − µl)1{j = l}

(2.10)
Finally we can recover the full ∂L∂x using (2.1), (2.2), (2.10) and we have:

dL

dxij
=

∑
k∈[1,N]
l∈[1,D]

dL

dykl

dykl
dx̂kl

dx̂kl
dxij

=
∑

k∈[1,N]
l∈[1,D]

dL

dykl
γl

([
1{i = k, j = l} − 1

N
1{j = l}

]
(σ2
l + ε)−1/2 − 1

N
(xkl + µl)(σ

2
l + ε)−3/2(xil − µl)1{j = l}

)

=
∑

k∈[1,N]
l∈[1,D]

dL

dykl
γl

[
1{i = k, j = l} − 1

N
1{j = l}

]
(σ2
l + ε)−1/2

−
∑

k∈[1,N]
l∈[1,D]

dL

dykl
γl

1

N
(xkl + µl)(σ

2
l + ε)−3/2(xij − µl)1{j = l}

=
1

N
(σ2
l + ε)−1/2γj

N∑
k=1

dL

dykl
(1{i = k}N − 1)− 1

N
(σ2
l + ε)−3/2(xij − µj)

N∑
k=1

dL

dykj
γj(xkj − µj)

=
1

N
(σ2
j + ε)−1/2γj

([
N

N∑
k=1

dL

dykj
1{i = k} −

N∑
k=1

dL

dykj

]
− (σ2

j + ε)−1(xij − µj)
N∑
k=1

dL

dykj
(xkj − µj)

)

=
1

N
(σ2
j + ε)−1/2γj

(
N
dL

dyij
−

N∑
k=1

dL

dykj
− (σ2

j + ε)−1(xij − µj)
N∑
k=1

dL

dykj
(xkj − µj)

)

11

So Finally we could have come up with a expression for dL
dxij

. We just need to recall that dL
dx is a

(N,D) matrix (same shape as x) that looks like:

dL
dx11

dL
dx12

. . . dL
dx1l

. . . dL
dx1D

dL
dx21

dL
dx22

. . . dL
dx2l

. . . dL
dx2D

...
. . .

. . .
. . .

...

dL
dxk1

dL
dxk2

. . . dL
dxkl

. . . dL
dxkD

...
. . .

. . .
. . .

...

dL
dxN1

dL
dxN2

. . . dL
dxNl

. . . dL
dxND



(2.11)

Having this in mind we can actually come up with the python implementation that looks like:

N = dout . shape [0]
dx = (1 . / N) ∗ (var + eps)∗∗(−1./2) ∗ gamma \

∗ (N ∗ dout − np .sum(dout , ax i s =0)\
− (var + eps)∗∗(−1.0) ∗ (x − mu.T) \
∗ np .sum(dout ∗ (x − mu.T) , ax i s =0))

dbeta = np .sum(dout , ax i s=0)
dgamma = np .sum(dout ∗ x_norm , ax i s=0)

2.3 Conclusion

We saw how we can implement batch normalization in Python. To do so we have drawn a graph of
all the elementary operations we needed to compute the forward pass. The backward pass can then
be computed directly using this graph. The thing to retain is that we used the chain rule in higher
dimension all along. Once we understand how it works it is quite straightforward.

12

	Backward pass: Naive implementation
	Batch normalization flowchart
	Computation of dbeta
	Computation of dgamma
	Computation of dx
	First we need to compute Lxc1 = dxc1
	Then we compute L2 = dvar
	We also need to compute Lxc2 = dxc2
	Again we need Lxc = dmu
	Finally we are able to compute Lx = dx

	Backward pass: Faster implementation
	Goal
	Problem
	Conclusion

